

Interfacing the Storage Resource Broker (SRB) to the Hierarchical Resource Manager (HRM)

Arie Shoshani, Alex Sim (LBNL) Reagan Moore, Bing Zhu (SDSC)

> PPDG meeting July 13-14, 2000

> > PPDG meeting, July 200

Outline

- HRM role in the Data Grid architecture
- HRM API description
- HRM HPSS system functionality
- SRB Client calls
- SRB-HRM architecture
- Status

HRM role in the Data Grid architecture

- The class of Storage Resource Managers (SRMs) includes:
 - HRM: for managing the access to tape resources
 - · may or may not have a disk cache
 - functionality generic but needs to be specialize for specific mass storage systems
 - e.g. HRM-HPSS, HRM-Enstore, ...
 - DRM: for managing disk resources
 - functionality generic but needs to be specialize for specific disk systems
 - · e.g. DRM-FileSystem, DRM-DPSS, ...

PPDG meeting, July 2000

HRM role in the Data Grid

Functionality Examples

HRM functionality may include:

- -- queuing of file transfer requests (kind of a reservation)
- -- reordering of requests to optimize PFTP order (ordered by files on the same tape)
- -- Monitoring progress and error messages
- -- rescheduling transfers that failed

DRM functionality may include:

- -- keeping tracks of files in cache
- -- managing space reservations
- -- making decisions on which files to remove when space is needed
- -- optimizing cache use sharing files requested by multiple clients
- -- enforce local policy for cache use

HRM API description

- API Functionality
 - Request to <u>transfer</u> a file to destination disk
 - A blocking call
 - Request to stage a file to HRM disk
 - A non-blocking call when HRM disk exists
 - Request status/time_estimate
 - · How long before file request will be processed
 - Request to abort a file transfer or stage
 - In case file no longer needed
 - Release a file
 - · After file was moved to destination
 - · optional to improve system efficiency
 - Call back when file is staged

HRM-HPSS system functionality

- All transfers go through HRM disk
 - reasons: flexibility of pre-staging
 - disk is sufficiently cheap for a large cache
 - opportunity to optimize for same file requests
- Functionality
 - queuing file transfers
 - file queue management
 - File clustering parameter
 - Transfer rate estimation
 - Query estimation total time
 - Error handling

PPDG meeting, July 2000

SRB Client calls

- Sget
 - blocking call (wait till file is transferred)
 - should only be issued if space on client disk is allocated
- Sstage
 - non-blocking call (returns time estimate)
 - requires a server if want to be notified
 - can issue status to find out if file was cached
- Sstatus
 - returns time estimate for file to be staged to HRM's disk
- Sabort
 - cancel this file request

Status

- Functionality that was tested
 - request a file transfer Sget
 - A single Client
- Functionality that exists but was not tested
 - Sget, Sstage, Sstatus
 - multiple Clients concurrent requests
 - use of replica catalog developed by SDSC
- Functionality that does not exist
 - A request manager that uses the replica catalog
 - A request manager that accesses multiple sites
 - A request manager that makes informed choices
 - A disk resource manager

PPDG meeting, July 2000

Optional Slides

- The following slides shows how HRM implements the functionality it provides
- They will be shown only if time permits

Queuing File Transfers

- Number of PFTPs to HPSS are limited
 - limit set by a parameter No_PFTP
 - parameter can be changed dynamically
- HRM is multi-threaded
 - issues and monitors multiple PFTPs in parallel
- All requests beyond PFTP limit are queued
- · File Catalog used to provide for each file
 - HPSS path/file_name
 - Disk cache path/file_name
 - File size
 - tape ID

PPDG meeting, July 200

• Goal — minimize tape mounts — still respect the order of requests — do not postpone unpopular tapes forever • File clustering parameter - FCP — If the file at top of queue is in Tape; and FCP > 1 (e.g. 4) then up to 4 files from Tape; will be selected to be transferred next — then, go back to file at top of queue • Parameter can be set dynamically

Transfer Rate (Tr) Estimates

- Need Tr to estimate total time of a query
- Tr is average over recent file transfers from the time PFTP request is made to the time transfer completes. This includes:
 - mount time, seek time, read to HPSS Raid, transfer to local cache over network
- For dynamic network speed estimate
 - check total bytes for all file being transferred over small intervals (e.g. 15 sec)
 - calculate moving average over n intervals (e.g. 10 intervals)

Query Estimate • Given: transfer rate Tr. • Given a query for which: - X files are in cache — Y files are in the queue F₄(Y) — Z files are not scheduled yet • Let s(file_set) be the total byte size of all files in file_set F₃(Y) • If Z = 0, then F₂(Y) -- QuEst = s(Y)/TrF₁(Y) • If $Z \neq 0$, then — QuEst = (s(T)+q.s(Z))/Trwhere q is the number of active queries

Error Handling

- 5 generic errors
 - file not found
 - return error to caller
 - limit PFTP reached
 - can't login
 - re-queue request, try later (1-2 min)
 - HPSS error (I/O, device busy)
 - remove part of file from cache, re-queue
 - try n times (e.g. 3), then return error "transfer_failed"
 - HPSS down
 - re-queue request, try repeatedly till successful
 - respond to File_status request with "HPSS_down"

